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1 Introduction

In the paper [3], a N = (0, 2) SYK-like model, which will be referred
to as the J-type model, was discussed. The model describes N chiral super-
multiplets and M Fermi super-multiplets with a (q + 1)-field interaction.
Moreover, higher spin symmetries emerge at specific limits of the parameter
µ ≡ M

N
.

Another class of models, called the E-type models, which also exhibit
the same properties. This paper aims to explore the underlying reasons and
reveals the symmetry of E and J superfields at the level of the action.

This paper is organized as follows. In Chapter 2, we review the J-
type model discussed in [3]. In Chapter 3, we introduce the calculations of
the E-type model and show that both models yield the same characteristic
determinant of the kernel matrix, which allows us to follow the analysis in
[3] and conclude that the E-type model also has the emergence of higher
spin symmetry. In Chapter 4, we argue that the consistency stems from
the symmetry at the action level and introduce the (0, 2) Landau-Ginzburg
(L-G) model to better show the E ↔ J symmetry. In Chapter 5, we utilize
this symmetry to more efficiently obtain the same characteristic determinant
mentioned in Chapter 3. We also show a family of models represented by
the parameter s will yield the same results.
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2 Review On J-type Model

In this section, we briefly introduce J-type model and its results. Cal-
culation details can be referred in Ch 3.

2.1 J-type Model Setting

We consider the action S0
Φ + S0

Λ + SJ :

S0
Φ = −

∫
dx2dθ+dθ̄+Φ̄∂zΦ (1)

S0
Λ =

1

2

∫
dx2dθ+dθ̄+Λ̄Λ (2)

SJ =

∫
dx2dθ+G(x, θ+, θ̄+) (3)

(4)

Here, G(x, θ+, θ̄+) is the Super Potential, composed of the Chiral Super
Field Φ, Fermi Super Field Λ, and Gaussian random variables Jia1···aq :

G(x, θ, θ̄) ≡ Jia1...aqΛ
iΦa1 . . .Φaq ,

Here the summation of repeated index is orderless and Gaussian ran-
dom variables Jia1···aq satisfy:

⟨Jia1...aq⟩ = 0

⟨Jia1...aqJia1...aq⟩ =
(q − 1)!

N q
J2

2.2 Field Setup

The component formalism of the Chiral and Fermi Super fields is as
follows:

Φi = ϕi +
√
2θ+ψi+ + 2θ+θ̄+∂+ϕ

i,

Φ̄i = ϕ̄i −
√
2θ̄+ψ̄i+ − 2θ+θ̄+∂+ϕ̄

i,
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Λi = λi −
√
2θ+Gi + 2θ+θ̄+∂+λ

i −
√
2θ̄+Ei(Φ),

Λ̄i = λ̄i −
√
2θ̄+Ḡi − 2θ+θ̄+∂+λ̄

i −
√
2θ+Ēi(Φ̄).

Expanding E(Φ), where Ei
,j = ∂Ei/∂ϕj :

Ei(Φ) = Ei(ϕ) +
√
2θ+Ei

,jψ
j
+ + 2θ+θ̄+Ei

,j∂+ϕ
j ,

Λi = λi −
√
2θ+Gi + 2θ+θ̄+∂+λ

i −
√
2θ̄+Ei(ϕ) + 2θ+θ̄+Ei

,jψ
j
+.

Λ̄i = λ̄i −
√
2θ̄+Ḡi − 2θ+θ̄+∂+λ̄

i −
√
2θ+Ēi(ϕ̄) + 2θ+θ̄+Ēi

,jψ̄
j
+,

The J-type model requires E(Φ) = 0, but in E-type model, introduced
in Chapter 3, we will consider the case where E(Φ) ̸= 0.

2.3 Solve J-type model

We focus on the low-energy (E ≪ J) conformal region, where the
kinetic terms in the action can be neglected, and we pay special attention
to the Jia1···aq term:

S ≈ S =

∫
dx2

(√
2Jia1...aq
(q − 1)!

λiψa1ϕa2 . . . ϕaq +

√
2Jia1...aq
q!

Giϕa1 . . . ϕaq + h.c.
)

Since Jia1···aq is a Gaussian random variable, meaningful physical quan-
tities need to consider the ensemble average of the random variable. Intro-
ducing the self-energy function Σ and the propagator G in the path inte-
gral process, we can derive the correct EOM for this system, namely the
Schwinger Dyson Equation (SD eqn):

Σψ = 2J2µGλ(Gϕ)q−1

Σλ = 2J2(Gϕ)q−1Gψ

ΣG =
2J2

q
(Gϕ)q

Σϕ = 2J2µ((q − 1)GλGψ(Gϕ)q−2 + (Gϕ)q−1GG)

ΣΨ ∗GΨ = −1 Ψ = {ϕ, ψ,G, λ}
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2.3.1 Solve SD Eqns

The two-point functions in the region we consider have the general
form:

GΨ(z1, z2) =
nΨ

(z1 − z2)2hΨ(z̄1 − z̄2)2h̃Ψ

The supersymmetric transformation of the propagator are shown as
follows, see [2][3][4].

Gψ(z1, z2, z̄1, z̄2) = −2∂z1G
ϕ(z1, z2, z̄1, z̄2) = 2∂z2G

ϕ(z1, z2, z̄1, z̄2)

GG(z1, z2, z̄1, z̄2) = −2∂z1G
λ(z1, z2, z̄1, z̄2) = 2∂z2G

λ(z1, z2, z̄1, z̄2)

Substituting the ansatz yields the following relationships for n, h, h̃:

nψ = −4hϕnϕ, hψ = hϕ +
1

2
, h̄ψ = h̄ϕ (5)

nG = −4hλnλ, hG = hλ +
1

2
, h̄G = h̄λ (6)

Using the above relationships and the Fourier transform of the SD
equation, we can determine hΨ, h̃Ψ and thus solve the model. The results
are as follows:

hϕ =
µq − 1

2µq2 − 2
, hψ =

µq2 + µq − 2

2µq2 − 2
, hλ =

q − 1

2µq2 − 2
, hG =

µq2 + q − 2

2µq2 − 2

h̃ϕ =
µq − 1

2µq2 − 2
, h̃ψ =

µq − 1

2µq2 − 2
, h̃λ =

µq2 + q − 2

2µq2 − 2
, h̃G =

µq2 + q − 2

2µq2 − 2

nλn
q
ϕ = − (q − 1)q

4π2J2(µq2 − 1)
(7)

2.4 Four Points Function

In the large-N limit, the non-trivial leading-order contribution to the
four-point function comes from the sum of ladder diagrams of various lengths.
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Using the Kernel K, we can obtain the total contribution of all ladder dia-
grams:

F =
∞∑
n=0

Fn =
∞∑
n=0

KnF0 =
1

1−K
F0.

The paper [3] observed the emergence of higher spin symmetry in the
Four Point Correlation Function. In this paper, we are primarily inter-
ested in the 4-point function ⟨ϕ̄iϕjϕ̄jϕj⟩, which mixes with ⟨ϕ̄iϕjψ̄jψj⟩,
⟨ϕ̄iϕjλ̄jλj⟩, ⟨ψ̄iψjλ̄jλj⟩, and ⟨ϕ̄iϕjḠjGj⟩.

From the Feynman diagrams, we know there are the following 9 types
of Kernels:

Kϕϕ(z1, z2, z3, z4) = 2(q − 1)J2M

N
Gϕ(z13)G

ϕ(z24)G
G(z34)(G

ϕ(z34))
q−2

+ 2(q − 1)(q − 2)J2M

N
Gϕ(z13)G

ϕ(z24)G
w(z34)G

λ(z34)(G
ϕ(z34))

q−3

Kϕψ(z1, z2, z3, z4) = 2(q − 1)J2M

N
Gϕ(z13)G

ϕ(z24)G
λ(z34)(G

ϕ(z34))
q−2

Kϕλ(z1, z2, z3, z4) = 2(q − 1)J2Gϕ(z13)G
ϕ(z24)G

w(z34)(G
ϕ(z34))

q−2

KϕG(z1, z2, z3, z4) = 2J2Gϕ(z13)G
ϕ(z24)(G

ϕ(z34))
q−1

Kwϕ(z1, z2, z3, z4) = −2(q − 1)J2M

N
Gw(z13)G

w(z24)G
λ(z34)(G

ϕ(z34))
q−2

Kwλ(z1, z2, z3, z4) = −2J2Gw(z13)G
w(z24)(G

ϕ(z34))
q−1

Kλϕ(z1, z2, z3, z4) = −2(q − 1)J2M

N
Gλ(z13)G

λ(z24)G
w(z34)(G

ϕ(z34))
q−2

Kλψ(z1, z2, z3, z4) = −2J2M

N
Gλ(z13)G

λ(z24)(G
ϕ(z34))

q−1

KGϕ(z1, z2, z3, z4) = −2J2M

N
GG(z13)G

G(z24)(G
ϕ(z34))

q−1

By substituting the analytic form of GΨ(z, z̄), we can analyze the form
of the kernel’s eigenfunctions and solve for the eigenvalues.

Φi(z1, z2) = (z12)
h−2hi(z̄12)

h̃−2h̃i

K(ij) ∗ Φj = kijΦi
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The eigenvalues of the kernel are functions of q, µ, h, h̃. By combining
the kernel eigenvalues into a matrix form, we obtain the kernel matrix as
follows: 

kϕϕ kϕψ kϕλ kϕG

kψϕ 0 kψλ 0

kλϕ kλψ 0 0

kGϕ 0 0 0

 (8)

The characteristic determinant is denoted as Ec(x, h, h̃, µ, q). Through
this characteristic determinant, we obtain the relationship between h, h̃ and
q, 1

µ
, and observe the emergence of higher spin symmetry. Soon, we are

going to see the same characteristic determinant in E-type model.

3 Calculation On E-type Model

This chapter provides a detailed derivation of the E-type model.

S = SΦ + SΛ, E(Φ) ̸= 0

This chapter presents specific calculations to highlight the differences
betweenE, J models. Unlike the J-type model, here Ea(Φi) = Jai1i2,...,iqΦi1 . . .Φiq ,
and there is no super potential.

3.1 Action

SΦ ≡ −
∫
d2x

∫
dθ+dθ

+
Φ∂zΦ

= −
∫
d2x

∫
dθ+dθ

+
(
−ϕ2θ+θ+∂2ϕ+ 2θ

+
θ+∂ϕ∂ϕ− 2θ

+
ψθ+∂ψ

)
=

∫
d2x

(
4ϕ∂2ϕ− 2ψ∂ψ

)
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SΛ ≡ 1

2

∫
d2x dθ+dθ

+
ΛΛ

= −1

2

∫
d2x×

(
2λ∂zλ− 2GG− 2∂zλλ+ 2Ē(ϕ̄)E(ϕ) + 2Ēi

,jψ̄
jλi + 2λ̄iE

i
,jψ

j
)

=

∫
d2x ·

(
−2λ∂zλ+GG− ĒE − λ̄iE

i
,jψ

j − Ēi
,jψ̄

jλi
)

(The integral results can be verified in [1][4])
In the SYK model, we need to deal with Gaussian integrals concerning

Jai1i2,...,iq . However, the appearance of the ĒE term is not convenient for
calculations. Therefore, we introduce an auxiliary field B and linearize this
term.

−ĒE ∼ B̄B −BE − B̄Ē

Thus, the complete action is

S ∼=
∫
d2xLkin + B̄B −BE − B̄Ē − ψ̄jĒa,jλ

a − λ̄aEa,jψ
j

3.2 Complex Gaussian Integral

We need to consider the ensemble average of J···, but note that the
variables here are complex Gaussian random variables. Before performing
the calculations, we need to carefully discuss the properties of complex
Gaussian integrals.

1. Properties of complex Gaussian integrals:

• J···, J̄··· are conjugate complex Gaussian variables. When calcu-
lating, they are split into real Gaussian variables (x, y), where
x, y follow Gaussian distributions with variance σ2 and the mean
µ is 0:

J··· → x··· + iy··· J̄··· → x··· − iy···
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• Following the convention of s = 2, ⟨JJ̄⟩ = 2σ2. The weight of the
complex Gaussian distribution is assumed to be exp(−x2+y2

2σ2 ).∫∫
dxdy exp

(
−x

2 + y2

sσ2

)
= πsσ2∫∫

dxdy exp
(
−x

2 + y2

sσ2
(x2 + y2)

)
= πs2σ4

⟨J···J
···⟩ = sσ2

• The integration process implicitly involves index pairing. Here is
an example for q = 4:
Proof :∑
abcd

∫
dJabcddJ̄abcd exp(−JijklXijkl) exp(−J̄i′j′k′l′X

i′j′k′l′

)× weight

=
∏
abcd

exp(· · · )×
∫
dJabcddJ̄abcd

(
exp(−JabcdXabcd − J̄abcdXabcd)× weightsabcd

)
=
∏
abcd

exp(· · · )× exp(Constant · (Xabcd +Xabcd)
2)

∼=
∏
abcd

exp(· · · )× exp
(
(Xabcd +Xabcd) · (Xa′b′c′d′ +Xa′b′c′d′)δaa′,bb′,cc′,dd′

)
Therefore, we need to introduce

∏
ijkl

δia,jb,kc,ld in the subsequent

integrals.

• The quantity we need to calculate is

⟨exp(−S)⟩ ∼ ⟨exp(−JX − J̄Y )⟩

Since X,Y are fields that cannot be arbitrarily permuted, it is
safest to discuss them in pairs.

∫ ∞

−∞

∫ ∞

−∞
exp

(
−x

2 + y2

2σ2

)
exp(−JX − J̄Y ) dx dy

exp
(
−x

2 + y2

2σ2
− x(Y +X)− iy(X − Y )

)
Integrating over x and y separately yields
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(2πσ2) exp
(
σ2

2
(Y +X)2 − σ2

2
(X − Y )2

)
Simplifying the exponential part:

σ2

2
(Y +X)2 − σ2

2
(X − Y )2

=
σ2

2

[
(Y +X)2 − (X − Y )2

]
=σ2(XY + Y X)

3.3 Field Contraction

After completing the Gaussian integrals, we consider the contraction
between identical fields. (The contraction between different types of fields
contributes zero) Finally, the dynamics of the system are described by the
GΨ field. Here, we take the calculation of the Gaussian integral for the
ψϕ · · ·ϕ fields as an example, and the case for Bϕ · · ·ϕ fields is analogous.

3.3.1 Ensemble Average of ψϕ · · ·ϕ Fields

By matching the indices, we obtain

∫∫
d2zd2z′

∑
i

λ̄(ψi1ϕi2 . . . ϕiq + . . .+ ϕi1 . . . ϕiq−1
ψiq)|z′ · (9)

(ψ̄iq ϕ̄iq−1
. . . ϕ̄i1 + . . .+ ϕ̄iq ϕ̄iq−1

. . . ψ̄i1)λ|z (10)

+ (11)∫∫
d2zd2z′

∑
i

(ψ̄iq ϕ̄iq−1
. . . ϕ̄i1 + . . .+ ϕ̄iq ϕ̄iq−1

. . . ψ̄i1)λ|z· (12)

λ̄(ψi1ϕi2 . . . ϕiq + . . .+ ϕi1 . . . ϕiq−1
ψiq)|z′ (13)

1. Rewrite the field bilinears using G through path integrals and perform
contractions between fields with the same indices. Specifically, this
involves the equivalence relation introduced by the path integral
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# ×G(z, z′) ∼
∑
a

Ψ̄a(z)Ψa(z′)

Here (# =M,N) represents the number of Chiral Fields and Fermionic
Fields respectively.

2. By exchanging the positions of z, z′ in the second part and swapping
four times fermionic fields, we consider the two parts in eqn 10 - 13 to
be identical.

3. The relationship between ordered and unordered summations is as
follows: ∑

1≤i1···iq≤N

=
1

q!

∑
1≤i1 ̸=···̸=iq≤N

⇒ 1

q!

∑
{i}

In the case of purely fermionic fields, the constraint {̸=} can be re-
laxed. However, for mixed fermionic and bosonic complex fields, it is
considered to hold approximately in the large N limit.

4. Gλ̄ ∼ Mλλ̄ is equivalent to considering the correlation functions of
the λ̄ field (rather than the λ field), but it is argued in Chapter 3.5.1
that the two are equivalent.

Thus, we consider that the exponential part in
∫
DΦDGDΣe−S con-

tains

∫∫
d2zd2z′

MN q

(q − 1)!
· ⟨J···J ···⟩ ·Gλ̄(z, z′)Gψ(z, z′)Gϕ(z, z′)q−1

3.3.2 Ensemble Average of Bϕ · · ·ϕ Fields

Considering that B,ϕ obey Bose-Einstein statistics, the calculation is
simpler than the one above, and we arrive the result as follows:∫∫

d2zd2z′
MN q

q!
· ⟨J···J̄···⟩ ·GB(z, z′)(Gϕ(z, z′))q
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3.4 Schwinger-Dyson Equations

Before obtain the equations of motion (EOM) of the system, we need
to complete the path integrals of the fields.

3.4.1 Path Integrals

Considering ⟨J···J̄···⟩ = (q−1)!J2

Nq
, the complete exponent in the path

integral is:

−N

(
Σψ
(
Gψ − 1

N

∑
ψ̄ψ

)
+Σϕ

(
Gϕ − 1

N

∑
ϕ̄ϕ

))
−M

(
Σλ̄
(
Gλ̄ − 1

M

∑
λλ̄

)
+ΣB

(
GB − 1

M

∑
B̄B

))
+

∫
d2z ·

(
4ϕ∂2ϕ− 2ψ∂ψ − 2λ∂λ+GG+ B̄B

)
+

∫∫
d2zd2z′MJ2Gλ̄(z, z′)Gψ(z, z′)Gϕ(z, z′)q−1

+

∫∫
d2zd2z′

J2M

q
GB(z, z′)(Gϕ(z, z′))q

First, consider the scalar case. Our equations will encounter Gaussian
integrals of complex scalar fields. Using the formula

∏∫∫
Dϕ̄iDϕi e−ϕ̄i hij ϕj =

1

det(h)
(for spinor fields, the integral result corresponds to h⇒ h−1)
We’ll get following structure, # is the operator obtained by matching

the bilinear form.

∫∫
Dϕ†Dϕ exp

(
−
∑

ϕ†(# − Σ)ϕ−NΣG+ · · ·
)

= exp (−N ln(det(# − Σ))−NΣG+ · · · )

3.4.2 First Set of SD Equations:

Variation with respect to Σ, we’ll have

G =
1

# − Σ
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We focus on the low energy region w ≪ 1 ≪ J , so we can drop the #
term.

Note that, since the first SD equation for the G field is GG = 1
−2−ΣG

,
but due to the lack of a G field coupled to J···, we can infer from the second
SD equation that on-shell ΣG = 0, so it does not contain any dynamics.

3.4.3 Second Set of SD Equations

Variation with respect to G, we’ll have

Σψ = µJ2Gλ(Gϕ)q−1

Σϕ = J2µ
(
(q − 1)GλGψ(Gϕ)q−2 +GB

(
Gϕ
)q−1

)
Σλ = J2Gψ(Gϕ)q−1

ΣB =
J2

q
(Gϕ)q

where M
N

≡ µ.

3.5 Solve SD Eqn

Obtaining the Schwinger-Dyson (SD) equations in principle allows us
to solve the system.

The homogeneity of the SD equations suggests the use of a conformal
ansatz for G.

Gi(z1, z2) =
ni

(z1 − z2)2hi(z̄1 − z̄2)2h̃i

Here, we present the detailed calculations of each GΨ and explore its
properties.

3.5.1 Relation between GΨ̄ 与 GΨ

We are going to show
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GΨ̄(z) = GΨ(z) = (−1)2sGΨ(−z)

hΨ̄ = hΨ

h̃Ψ̄ = h̃Ψ

nΨ̄ = nΨ

Proof

GΨ̄(z1, z2) ≡⟨Ψ(z1)Ψ̄(z2)⟩

=(−1)2s⟨Ψ̄(z2)Ψ(z1)⟩

=(−1)2(hΨ−h̃Ψ)GΨ(z2, z1)

∴ GΨ̄(z) =(−1)2(hΨ−h̃Ψ)GΨ(−z)

The second step uses the statistical properties of particles, while the
last step utilizes the form of the Ansatz.

∵− 1 = eiπ,−1 = e−iπ

∴− 1x × (−1)
x
= 1

∴ (−z)2hΨ(−z)2h̃Ψ = (−1)2hΨ−2h̃Ψ(z)2hΨ(z̄)2h̃Ψ

Using the properties discussed above we can verified that GΨ̄(z) =

GΨ(z) = (−1)2sGΨ(−z)

nΨ̄

z2hΨ̄ z̄2h̃Ψ̄

= (−1)2(hΨ−h̃Ψ) nΨ

(−z)2hΨ(−z)2h̃Ψ

=
nΨ

z2hΨz2h̃Ψ

Thus, we can replace Gλ̄(z) with Gλ(z) in the SD equations. Since the
Gλ̄ field is no longer involved, we can replace Σλ̄ with Σλ. The simplified
SD equations are as follows:
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Σψ = µJ2Gλ(Gϕ)q−1 (14)

Σϕ = J2µ
(
(q − 1)GλGψ(Gϕ)q−2 +GB

(
Gϕ
)q−1

)
(15)

Σλ = J2Gψ(Gϕ)q−1 (16)

ΣB =
J2

q
(Gϕ)q (17)

3.5.2 Fourier Transform

The Fourier space provides a simpler way to solve the SD equations

Σ(w)G(w) = −1

According to the second set of SD equations, Σ can be written in the
form of nΣ

z2hΣ z̄2h̃Σ
(or its combinations), where the conformal weights are

hΣ, h̃Σ.
Using the following Fourier transform:

1

z2hz̄2h̄
⇒ π

i2(h−h̄)22h̄+2h−2
· Γ(1− 2h)

Γ(2h̄)

1

p(2h̄+1)p̄2h+1

we can proceed to solve the equations.

F
[

nΣ

z2hΣ z̄2h̃Σ

]
F
[

nG

z2hG z̄2h̃G

]
= −1

F
[

nΣ

z2(1−hG)z̄2(1−h̃G)

]
F
[

nG

z2hG z̄2h̃G

]
= −1

(−1)2hG−2h̃G+1 nΣnGπ
2

(2hG − 1)(2h̃G − 1)
= −1

1. The first step uses the matching of the exponents of p to obtain the
relations

hΣ + hG = 1 h̃Σ + h̃G = 1

2. The second step uses the statistical properties of the fields, 2(h− h̄) =
2s ∈ Z and arrives
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− π2

(2h̄− 1)(2h− 1)
· sin(2πh̄)

sin(2πh̄+ 2πs)

3.5.3 Exponent Matching for the First Set of SD Equations:

From the above equations, we can derive two independent sets of con-
formal weight relations from the second set of SD equations:

hψ + hλ + (q − 1)hϕ = 1

h̃ψ + h̃λ + (q − 1)h̃ϕ = 1

hB + qhϕ = 1

h̃B + qh̃ϕ = 1

Combining the four equations in eqn 2.3.1, we can express all h, h̃ in
terms of hϕ, h̃ϕ. And the Fourier transforms of equations 16 and 17 allow
us to solve for hϕ, h̃ϕ:

π2J2nψnλn
q−1
ϕ · (−1)2hψ−2h̃ψ+1 · µ

(2hψ − 1)(2h̃ψ − 1)
= −1 (18)

π2J2nψnλn
q−1
ϕ · (−1)2hλ−2h̃λ+1 · 1

(2hλ − 1)(2h̃λ − 1)
= −1 (19)

µ

2hϕ(2h̃ϕ − 1)
=

1

(1− 2h̃ϕq)(−2hϕq)
(20)

Since ϕ is a scalar field, we have hϕ = h̃ϕ, and thus we can solve for all
h, h̃:

h̃ϕ = hϕ =
µq − 1

2µq2 − 2

h̃ψ =
µq − 1

2µq2 − 2
hψ =

µq2 + µq − 2

2µq2 − 2

h̃B = hB =
µq2 + q − 2

2µq2 − 2

h̃λ =
µq2 + q − 2

2µq2 − 2
hλ =

q − 1

2µq2 − 2
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3.5.4 Obtaining the n Relations

Since we know that nΣnG = (−1)−2s(2hG−1)(2h̃G−1)
π2 , it leads to the fol-

lowing relations:

nλn
q
ϕ = − (q − 1)q

2π2J2 (µq2 − 1)

nBn
q
ϕ =

(q − 1)2q

π2J2(µq2 − 1)2

There are two sets of expressions for nΨ is because B is an auxiliary
field without super symmetric transformations. However, it is worth noting
the similarity between these expressions and the results of the J-type model
in ch 7.

3.6 Four Points Function

By calculating with Feynman diagrams, we obtain the following expres-
sion for the kernel:

Kϕϕ(z1, z2, z3, z4) = (q − 1)J2M

N
Gϕ(z13)G

ϕ(z24)G
B(z34)(G

ϕ(z34))
q−2

+(q − 1)(q − 2)J2M

N
Gϕ(z13)G

ϕ(z24)G
ψ(z34)G

λ(z34)(G
ϕ(z34))

q−3

Kϕψ(z1, z2, z3, z4) = (q − 1)J2M

N
Gϕ(z13)G

ϕ(z24)G
λ(z34)(G

ϕ(z34))
q−2

Kϕλ(z1, z2, z3, z4) = (q − 1)J2Gϕ(z13)G
ϕ(z24)G

ψ(z34)(G
ϕ(z34))

q−2

KϕB(z1, z2, z3, z4) = J2Gϕ(z13)G
ϕ(z24)(G

ϕ(z34))
q−1

Kψϕ(z1, z2, z3, z4) = −(q − 1)J2M

N
Gψ(z13)G

ψ(z24)G
λ(z34)(G

ϕ(z34))
q−2

Kψλ(z1, z2, z3, z4) = −J2Gψ(z13)G
ψ(z24)(G

ϕ(z34))
q−1

Kλϕ(z1, z2, z3, z4) = −(q − 1)J2M

N
Gλ(z13)G

λ(z24)G
ψ(z34)(G

ϕ(z34))
q−2

Kλψ(z1, z2, z3, z4) = −J2M

N
Gλ(z13)G

λ(z24)(G
ϕ(z34))

q−1

KBϕ(z1, z2, z3, z4) = −J2M

N
GB(z13)G

B(z24)(G
ϕ(z34))

q−1
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1. To ensure that the four-point function is connected in the correct or-
der, one should in principle carefully handle GΨ, GΨ̄, and zij or zji.
However, using our previous discussion in sec 3.5.1, it is only necessary
to carefully handle the signs.

2. To ensure that the fields and their conjugates are connected in the
correct order, we need to cross the up and down rails. This will carry
a negative sign for fermionic external legs.

3.7 Eigenvalues of the Kernel

The form of the eigenfunctions and the eigenvalues are given by

Φi(z1, z2) = (z12)
h−2hi(z̄12)

h̃−2h̃i , i = ϕ, ψ, λ,G

K(ij) ∗ Φj = kijΦi.

The integrand for the eigenvalue calculation is:∫∫
d2z3d

2z4 K
(ij)(z1, z2, z3, z4)Φ

j(z3, z4) = kijΦi(z1, z2)

Kij ∗ Φj ∝ z−2hi
13 z̄−2h̃i

13 · z−2hi
24 z̄−2h̃i

24 · zh−2hj−2h∗

34 z̄
h̃−2h̃j−2h̃∗

34

(where h∗�h̃∗ represent the accumulated conformal weights of the Green
functions exchanged between the two rails)

Using following formula, we can handle the integral

∫
d2y(y − t0)

a+n(ȳ − t̄0)
a(t1 − y)b+m(t̄1 − ȳ)b

=(t0 − t1)
a+n+b+m+1(t̄0 − t̄1)

a+b+1 ×

π
Γ(a+ 1)Γ(b+ 1)Γ(−a− b−m− n− 1)

Γ(a+ b+ 2)Γ(−a− n)Γ(−b−m)
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3.7.1 Integral Processing

Step 1: Integrate over z3, z̄3 equals to directly substitute

t0 ⇒ z4, t1 ⇒ z1,

m⇒ −2(hi − h̃i), b⇒ −2h̃i,

a⇒ h̃− 2h̃j − 2h̃∗, n⇒ (h− h̃)− 2(h∗ − h̃∗)− 2(hj − h̃j).

The resulting function form is:

z
h−2hj−2hi−2h∗+1
41 z̄

h̃−2h̃j−h̃i−2h̃∗+1
41 · z−2hi

24 z̄−2h̃i
24 .

Step 2: Integrate over z4, z̄4equals to directly substitute

t0 ⇒ z1, t1 ⇒ z2,

b⇒ −2h̃i, m⇒ −2(hi − h̃i),

a⇒ h̃− 2h̃j − 2h̃i − 2h̃∗ + 1, n⇒ (h− h̃)− 2(h∗ − h̃∗)− 2(hj − h̃j)− 2(hi − h̃i).

The resulting function form after integration is

z
h−2hi+(2−2hj−2hi−2h∗)
12 z̄

h̃−2h̃i+(2−2h̃j−2h̃i−2h̃∗)
12 .

Another interpretation of the p balance relation, introduced in CH3.5.3,
is to obtain the conformal weight normalization for all Green functions con-
nected to each vertex.

2− 2hj − 2hi − 2h∗ = 0

Thus, the final function form we obtain is zh−2hi
12 z̄h̃−2h̃i

12 .
Since the form of the eigenfunctions is correct, the process of calculating

the eigenvalues, only needs to calculate the products of two sets of the
following functions:

F [a, b,m, n] = π
Γ(a+ 1)Γ(b+ 1)Γ(−a− b−m− n− 1)

Γ(a+ b+ 2)Γ(−a− n)Γ(−b−m)

Denote the integrand of the complex convolution as KijΦ = zX13z
Y
24z

Z
34 ·

z̄X̃13z̄
Ỹ
24z̄

Z̃
34, the final result of eigenvalues are

F [Z̃, X̃,X − X̃, Z − Z̃] · F [X̃ + Z̃ + 1, Ỹ , Y − Ỹ , Z +X − Z̃ − X̃]
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3.7.2 Eigenvalue Calculation Results

kϕϕ =
µ(q − 1)2q(µq2 − 2µq + 1)Γ

(
(q−1)qµ
q2µ−1

)2
Γ
(
−hµq2+µq+h−1

q2µ−1

)
Γ
(
h̃− (q−1)qµ

q2µ−1

)
4(µq2 − 1)2Γ

(
qµ−1
q2µ−1

)2
Γ
(
hµq2−2µq2+µq−h+1

1−q2µ

)
Γ
(
h̃+ (q−1)qµ

q2µ−1

)

kϕψ = −
µ(q − 1)2qΓ

(
(q−1)qµ
q2µ−1

)2
Γ
(

−hµq2+µq+h−1
q2µ−1

)
Γ
(
h̃− (q−1)qµ

q2µ−1

)
8(µq2 − 1)Γ

(
qµ−1
q2µ−1

)2
Γ
(
hµq2−2µq2+µq−h+1

1−q2µ

)
Γ
(
h̃+ (q−1)qµ

q2µ−1

)

kϕλ = −
2π2J2(q − 1)nq+1

ϕ (µq − 1)Γ
(

(q−1)qµ
q2µ−1

)2
Γ
(

−hµq2+µq+h−1
q2µ−1

)
Γ
(
h̃− (q−1)qµ

q2µ−1

)
(µq2 − 1)Γ

(
qµ−1
q2µ−1

)2
Γ
(
hµq2−2µq2+µq−h+1

1−q2µ

)
Γ
(
h̃+ (q−1)qµ

q2µ−1

)

kϕB = −
π2J2nq+1

ϕ Γ
(

(q−1)qµ
q2µ−1

)2
Γ
(

−hµq2+µq+h−1
q2µ−1

)
Γ
(
h̃− (q−1)qµ

q2µ−1

)
Γ
(
qµ−1
q2µ−1

)2
Γ
(
hµq2−2µq2+µq−h+1

1−q2µ

)
Γ
(
h̃+ (q−1)qµ

q2µ−1

)

kψϕ =
µ(q − 1)2q(µq − 1)2Γ

(
(q−1)qµ
q2µ−1

)2
Γ
(

−hµq2+µq2+µq+h−2
q2µ−1

)
Γ
(
h̃− (q−1)qµ

q2µ−1

)
2(µq2 − 1)3Γ

(
µq2+µq−2
q2µ−1

)2
Γ
(

−hµq2+(q−1)µq+h
q2µ−1

)
Γ
(
h̃+ (q−1)qµ

q2µ−1

)

kψλ = −
4π2J2nq+1

ϕ (µq − 1)2Γ
(

(q−1)qµ
q2µ−1

)2
Γ
(

−hµq2+µq2+µq+h−2
q2µ−1

)
Γ
(
h̃− (q−1)qµ

q2µ−1

)
(µq2 − 1)2Γ

(
µq2+µq−2
q2µ−1

)2
Γ
(

−hµq2+(q−1)µq+h
q2µ−1

)
Γ
(
h̃+ (q−1)qµ

q2µ−1

)

kλϕ =
µ(q − 1)3q2n−q−1

ϕ (µq − 1)Γ
(

1−q
q2µ−1

)2
Γ
(

−hµq2+q+h−1
q2µ−1

)
Γ
(
q+h̃(q2µ−1)−1

q2µ−1

)
32π2J2(µq2 − 1)3Γ

(
q−1
q2µ−1

)2
Γ
(

−hµq2+2µq2−q+h−1
q2µ−1

)
Γ
(

−q+h̃(q2µ−1)+1
q2µ−1

)

kλψ = −
µ(q − 1)2q2n−q−1

ϕ Γ
(

1−q
q2µ−1

)2
Γ
(

−hµq2+q+h−1
q2µ−1

)
Γ
(
q+h̃(q2µ−1)−1

q2µ−1

)
64π2J2(µq2 − 1)2Γ

(
q−1
q2µ−1

)2
Γ
(

−hµq2+2µq2−q+h−1
q2µ−1

)
Γ
(

−q+h̃(q2µ−1)+1
q2µ−1

)
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kBϕ = −
µ(q − 1)4q2n−q−1

ϕ Γ
(

1−q
q2µ−1

)2
Γ
(

−hµq2+µq2+q+h−2
q2µ−1

)
Γ
(
q+h̃(q2µ−1)−1

q2µ−1

)
16π2J2(µq2 − 1)4Γ

(
µq2+q−2
q2µ−1

)2
Γ
(

−hµq2+µq2−q+h
q2µ−1

)
Γ
(

−q+h̃(q2µ−1)+1
q2µ−1

)
Its greatly similar to J-type model’s result and the kernel matrix for

E-type model is as follows. The representation is on {ϕ, λ, ψ,B} but uses
the result in [3] denoted as k̃.

k̃ϕϕ k̃ϕψ k̃ϕλ

2
k̃ϕG

2

k̃ψϕ 0 k̃ψλ

2
0

2k̃λϕ 2k̃λψ 0 0

2k̃Gϕ 0 0 0

 (21)

We can see the characteristic determinant is exactly same as the one
from matrix in eqn 8

4 Duality of the (0, 2) Landau-Ginzburg Model

The following discussion is primarily based on this paper[2], discussing
the symmetry of E ↔ J on the L level.

4.1 Action

The complete (0, 2) L-G action includes S0
Λ + S0

Φ + SJ with E ̸= 0

Skin = SΦ + SΛ = −
∫
d2x dθ+dθ

+
Φ∂zΦ+

1

2

∫
d2x dθ+dθ

+
ΛΛ (22)

SJ = −
∫
d2ydθ+ΛiJi(Φ)|θ+=0

+ h.c. (23)

As we already seen the action for SΦ and SΛ in CH 3, we’ll analysis SJ
in following.

4.1.1 SJ Integral:

Require θ̄+ = 0. For the convenience of calculation, we can expand Φ,
J(Φ), and Λ:
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Φi|θ̄+=0 = ϕi +
√
2θ+ψi+,

Ji(Φ)|θ̄+=0 = Ji(ϕ) +
√
2θ+Ji,jψ

j
+, where Ji,j =

∂Ji
∂Φj

,

Λi|θ̄+=0 = λi −
√
2θ+Gi.

We can obtain the contribution from the θ+ part:

ΛiJi|θ̄+=0 = λiJi +
√
2θ+(−λiJi,jψj+ −GiJi)

Finally, we get:

SJ =
√
2

∫
d2x · (λiJi,jψj+ +GiJi)

Derivation of the conjugate part:

Shc
J =

∫
d2x dθ̄+J̄(Φ̄)Λ̄

Φ̄i|θ+=0 = ϕ̄i −
√
2θ̄+ψ̄i+,

J̄i(Φ̄)|θ+=0 = J̄i(ϕ̄)−
√
2θ̄+J̄i,jψ̄

j
+, where J̄i,j =

∂J̄i
∂ϕ̄j

,

Λ̄i|θ+=0 = λ̄i −
√
2θ̄+Ḡi.

Thus, we can obtain:

Shc
J =

√
2

∫
d2x

(
ḠiJ̄i + J̄i,jψ̄

j
+λ̄

i
)

SJ =
√
2

∫
d2x · (λiJi,jψj+ +GiJi + ψ̄j+J̄i,jλ̄

i + J̄iḠ
i)

Complete L(
4ϕ∂2ϕ− 2ψ∂ψ

)
(24)

+
(
−2λ∂zλ+GG− ĒE − λ̄iE

i
,jψ

j − Ēi
,jψ̄

jλi
)

(25)

+
√
2
(
λiJi,jψ

j
+ +GiJi + ψ̄j+J̄i,jλ̄

i + J̄iḠ
i
)

(26)
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4.2 E ↔ J Symmetry

Remark:
We can see that the G field has no kinetic terms and is similar to an

auxiliary field. The equations of motion for G and Ḡ yield:

Gi = −
√
2J̄i,

Ḡi = −
√
2Ji.

Thus, we can obtain the contributions from the G-J coupling terms
and the G field itself: +2J̄J .

L without the G field

L = kinϕ,ψ,λ+

− 2J̄J − ψ̄j+(−
√
2J̄ i,j)λ̄i − λi(−

√
2J i,j)ψ

j
+

− ĒE − ψ̄jĒi
,jλi − λ̄iE

i
,jψ

j

We can see that there is a symmetry transformation:

E ⇔ −
√
2J, λ↔ λ̄

In addition, there are constraints on E and J field. [2][4][1]:

E · J = 0

This is naturally satisfied for the subsequent discussions of E = 0, J ̸= 0

and E ̸= 0, J = 0.

5 J-type and E-type SYK Models

By substituting the specific E, J-type model super field, and introduc-
ing auxiliary fields in the E-type model, we can intuitively see the symmetry
condition for E, J models at the level of the action. We can generalize this
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condition when we focus on the discussion on characteristic determinant of
kernel matrix.

Compare the action obtained in CH2,3 for J,E-type models, we can
see

SE
∫
d2xLkin + B̄B −BE − B̄Ē − ψ̄jĒa,jλ

a − λ̄aEa,jψ
j (27)

SJ =

∫
d2xLkin(⊃ +ḠG)+

√
2GJ+

√
2ḠJ̄+

√
2ψ̄j J̄a,jλ̄

a+
√
2λaJa,jψ

j (28)

The fields in the E, J-type super potential models have the following
correspondence at the level of the action

GJ ⇔ BE (29)

λJ ⇔ λ̄E (30)

−
√
2J ⇔ E (31)

However, in our case, E(Φ) = J(Φ)，which do not fully satisfy the dual-
ity conditions discussed previously. The overall sign of −

√
2 does affect the

value of kenels. However, it would not affect the characteristic determinant
of the kernel matrix.

This chapter demonstrates that the differences lie only in the coeffi-
cients, without presenting the specific and complex calculations. At the
end of this chapter, a simplified method will be introduced to show how to
quickly obtain the differences in coefficients.

5.1 Comparison of SD Equations

We can calculate the SD eqn as follows. The blue ones are the SD
equations of the E-type model, and the black ones are the SD equations of
the J-type model.
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Σψ = µJ2Gλ̄(Gϕ)q−1 Σψ = 2J2µGλ(Gϕ)q−1

Σλ = J2Gψ(Gϕ)q−1 Σλ = 2J2(Gϕ)q−1Gψ

ΣB =
J2

q
(Gϕ)q ΣG =

2J2

q
(Gϕ)q

Σϕ = J2µ((q − 1)Gλ̄Gψ(Gϕ)q−2 + (Gϕ)q−1GB)

Σϕ = 2J2µ((q − 1)GλGψ(Gϕ)q−2 + (Gϕ)q−1GG)

5.2 Comparison of hΨ, h̃Ψ, nΨ

Since h and h̃ are only related to the conformal weight of fields in the
Fourier transform process, and are independent of the coefficients in the SD
equations.

As for nΨ:

nλn
q
ϕ = − (q − 1)q

4π2J2(µq2 − 1)

⇓

nλn
q
ϕ = − (q − 1)q

2π2J2(µq2 − 1)

nBn
q
ϕ =

(q − 1)2q

π2J2(µq2 − 1)2
(32)

Differences:

1. In eqn 32, it can be seen that the n factors differ by a factor of two.

2. Since there is no supersymmetric transformation for the B field, the
relationship between the B and λ fields cannot be constructed. How-
ever, the B field is greatly similar to the G field shown in J-type
model.

nB = −4 · q − 1

2(µq2 − 1)
nλ =− 4hλnλ

nG =− 4hλnλ

nB =nG
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5.3 Comparison of S(Jai1···iq)

Comparison of the interaction fields coupled with Jai1···iq :

−Jai1···iq ·
(
qλ̄ψi1ϕi2 · · ·ϕiq +Baϕi1ϕi2 · · ·ϕiq

)
√
2Jia1···aq ·

(
qλiψa1ϕa2 · · ·ϕaq +Giϕa1 · · ·ϕaq

)
Differences:

1. Although λ̄ field is different from λ, in the Ansatz we consider, there
is Gλ̄ = Gλ. For detailed discussion, see Appendix ??. Therefore it
does not have a significant impact on subsequent discussions.

2. The vertex would differ by a factor of −
√
2, which is important in

kernel calculation.

5.4 Kernel Matrix

Combined the differences mentioned above,( To be more specific, they
are the −

√
2 factor in S(J···) and 1/2 factor in eqn 32), we can derived the

new kernel matrix in the basis of ϕ, ψ, λ,B instead of G. Here, the meaning
of k̃ refers to using the k’s value in reference [3].


kϕϕ kϕψ kϕλ kϕG

kψϕ 0 kψλ 0

kλϕ kλψ 0 0

kGϕ 0 0 0

⇒


k̃ϕϕ k̃ϕψ k̃ϕλ

2
k̃ϕG

2

k̃ψϕ 0 k̃ψλ

2
0

2k̃λϕ 2k̃λψ 0 0

2k̃Gϕ 0 0 0

 (33)

5.5 Simple Method in Coefficient

If E(Φ) and J(Φ) differ by an arbitrary coefficient, i.e.

E(Φ) = −
√
2sJ(Φ)

we can consider the change of coefficients in J··· i.e,
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Jai1···iq ⇒ Jai1···iq · s

Subsequently, by focusing on J2 and Jai1···iq , we can adjust the kernel
matrix and the coefficients of nλnqϕ. For the model E(Φ) = J(Φ) we are
interested in, s = − 1√

2

SD Equations:
Notice that each equation contains a J2 term, so the corresponding

modification factor should be s2, and for the E(Φ) we are discussing, it is
1/2.

Coefficient of nλnqϕ: Notice that it is proportional to 1
J2 , so the cor-

rection factor is 1
s2

.
Coefficient of the Kernel
The kernel is affected by two parts. The first part is a J2 contribution

as a vertex, so there is a correction factor of s2 overall. The second part
is that the specific expression of the kernel contains nλnqϕ, so each element
has its own correction factor.

1. Kϕϕ contains two parts, each with a factor of nλnqϕ.

2. Kϕψ contains a factor of nλnqϕ.

3. Kϕλ contains an unaffected nq+1
ϕ .

4. KϕG contains an unaffected nq+1
ϕ .

5. Kψϕ contains a factor of nλnqϕ.

6. Kψλ contains an unaffected factor of n−q−1
ϕ .

7. Kλϕ contains a factor of (nλnqϕ)2.

8. Kλψ contains a factor of (nλnqϕ)2.

9. KGϕ contains a factor of (nBnqϕ)2.

Coefficient Change of kΨΦ Matrix
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
1 1 s2 s2

1 0 s2 0
1
s2

1
s2

0 0
1
s3

0 0 0


It can be observed that the determinant of the characteristic determi-

nant is unchanged when we scale the factor s.
For the model we are discussing, where E(Φ) = J(Φ), s = − 1√

2
, so we

can obtain the matrix in eqn 33.

6 Summary

In this paper, we introduce two SUSY SYK-like models: the J-type
model and the E-type model. The Lagrangians of these two models are
defined in very distinct ways. Through calculations, as shown in Chapters 2
and 3, we find that both models yield strikingly similar results for the kernel.
We uncover the reason for this phenomenon in the (0,2) L-G model, where
we establish that E(Φ) = −

√
2J(Φ) serves as a symmetry condition at the

action level. However, more significantly, when examining the characteristic
determinant of the kernel matrix, we can relax this condition to J(Φ) ∝
E(Φ). This implies that a class of models satisfying this proportionality
will produce consistent results.

参考文献

[1] Allan Adams, Anirban Basu, and Savdeep Sethi. (0,2) duality, 2004.

[2] Ilarion V Melnikov and Savdeep Sethi. Half-twisted (0, 2) landau-
ginzburg models. Journal of High Energy Physics, 2008(03):040–040,
March 2008.

[3] Cheng Peng.
N = (0, 2)

syk, chaos and higher-spins. Journal of High Energy Physics, 2018(12),
December 2018.

27



[4] Edward Witten. Phases of n = 2 theories in two dimensions. Nuclear
Physics B, 403(1–2):159–222, August 1993.

A Appendix

A.1 The Sign of SJ

If the red negative sign in eqn26 and eqn23 is a positive sign, then
the final result would still be

L =kinϕ,ψ,λ+

− 2J̄J − ψ̄j+(
√
2J̄ i,j)λ̄i − λi(

√
2J i,j)ψ

j
+

− ĒE − ψ̄jĒi
,jλi − λ̄iE

i
,jψ

j

The only difference is a coefficient in the dual result

E ⇔ +
√
2J, λ↔ λ̄
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