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Abstract

This is a detailed derivation note primarily based on Chapter 6 of Professor Yu-tin Huang’s
hep-th paper, arXiv:1210.4226

1 Introduction

This is an unfinished note based on Chapter 6 of Professor Yu-tin Huang’s hep-th pa-
per[tHCH12]. I finished the derivation of I5,; and made some effort in deriving following formula,

I made some simplification but remaining red words means some puzzles to be solved in the future.

2 Embedding Formalism

Uplift 3-D vector to 5-D adding up constraining condition in order to manifest the symmetry
the system has.

Define of null 5 vector :

yi = (T, 1,22)

Note that the index i here is note the spacial index, it’s a label for different momentum

Define metric and Inner Product For Null Vector:

Convention:(i - j) ==y, - y; = gMNszyév = (z; — xj)Q

We can thus find the metric under the condition that
1. five-dimensional vector V is null vector, which satisfies the condition V -V =0
2.The inner product (X -Y) is equal to (X —Y)%:

-2 0 0 0
0 -2 0 0
gun=| 0 0 -2 0 0
0O 0 0 01
0O 0 0 1 0

Matrix representation of Inner product of (i - j) where the diagonal is zero is because the
null embedding formalism and the off-diagonal part which equals to y; — y;+1 = p?> = 0 represent

on shell condition
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3 Feynman Para & Cheng-Wu Thm

3.1 Two Part Feynman Para

Here’s a integration trick:

And here’s an example:

1 /1d 1 /1d oy, 001 = das — dav)
TN N « - - = a1ac - -
(a)a3) o Honla )+ T—a@D)?  Jo = Faa(ari) +as(a- i)

We set A = ayy; + apy; numerator becomes (a - A)%. For the § function part we can use

Cheng-Wu theorem to treat it as fooo a1a20(1 —a; —ay) =T'[3] Ooo dé‘i?f)"’ X R BCA SN )R

there fore,

1 e daidas 1
@@ ”3]/0 GL(1) (a- A)? M

3.2 N Part Feynman Para

The treatment on ¢ function should be careful, which is pretty trivial in previous case but

1 1 1—uy 1= 0" g 5(1— S
Al e An 0 0 (Zk:l ukAlc)

0
1 Ul Un —2
=(n— 1)!/ dul/ dus - - / Aty 1 X (2)
0 0 0
1

[Attn_1 + Az(tp—2 — Up_1) + - + An(1 — up_1)]"
The original definition that can be considered as an integral transform is the second line;

not here.

hence, the first line is merely a deformation of such an integral transform under the action of the

¢ function. Under the influence of the ¢ function, the integral can be expanded to fol.

1 ! (n—1)!
S --~dn5( i—l) _
AAy A, /0 - duy 6 (3 u (U1 Ay + Uz Az + - Up Ay
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Figure 1: Integration region with ¢ function constraint

For example, when n = 3,

1 2
ABC [zA+yB + 203"

When using Mathematica for integration, after eliminating the § function, one should handle

1
/ dedydzdé(x+y+2z—1)
0

the integration intervals carefully, not all variables integrate from fol. The correct handling is as

follows:

1 1-yp 1
2 ></ / dy dx
o Jo (zA+yB+ (1 -z —y)C)3

Intuitively, due to the presence of the § function, the effective integration region is as shown

in the following figure, so the integration region is fixed when there is the § function.

3.2.1 Schwinger Parametrization:

Other representations of 4= — Schwinger Parametrization, referenced from [Sch14].

1 o) 1 )
E _ _/0 TdT/O dx ez'r(z‘H*(BfA)m)
! 1

_/0 MAT (B AP

Some common formulas:

1 I'(m + mn) /OO d sm—1
s
o

A"Bm ~ T(m)[(n) A+ Bs)ntm




For products of multiple a; variables raised to the power of «;, the result is [KCL23],

n . aj n n a]71
¢ -1 7/(1 S / ia-s
— = 3% = "se (4)
£I<aj> /Qmﬂ [1 [0,00) []
where f[o,oo) drs =1, J,” ds;.
3.3 Cheng-Wu Thm:
[HM19]
3.4 Reproduction of (3.2)
Our goal is to prove following equation,
€(a7i7j7 k? l) . . F[3}
L ma ] o ik [T
We would use following convention,
dF = H doid(1 =), o)
Y = a1y + aay; + asyr + cuys
By linearity:(a-Y) = ay(a-i) + as(a- j) + az(a - k) + as(a - 1)
Derive:
/ -3 dos — 1
((a-d)ar+ (a-jlog + (a-k)ag + (a-1)oy)? YT ad)((a i) + (a-j)ag+ (a-k)ag + (a-1)ay)?
preserve 1
a—0  (a-i)((a-j)az+ (a-k)as+ (a-1)ag)?
1 1
‘ . day = — ‘ . ‘
/ (a-i)(a- oz + (a-k)as + (a-Dag)? - 2@a-i)(a-j)((a-jaz+ (a-k)ag+ (a-1)ay)?
preserve ]-

az=0  2(a-i)(a-j)((a- - k)as + (a-1)ay)?
1
/2(a a5 ((a-k)as+ (a-1)ay)?

dag = 20a-1)(a-j)(a k)((a-k)as+ (a-)ay)

preserve 1
as—0  2(a-i)(a-j)(a-k)(a-)ay

Using Cheng Wu Theorem, by substituting cy — 1 we have integrand I

3.5 Single Loop Integral

Our goal is to obtaint (3.4) from (3.3), which is to prove:

1 dP*+2ad(a?) 1 T[3-2] 1
F[g]/a (a V) F[3]/z’(27r)DVol(GL(1)) (a-Y)}a-I)P=3 (47)% (I-Y)P-3(1y2)3-%
(5

~

Yyr = (6D7 0, 1)
Prove:



Using GL(1) Symmetry to gauge fix (@,aP+ aP*2) to (@, 1,aP+?)
Since 6(a?) = 6(a - a) = §(guna™a®), therefore aP?*+? has to be @ - @

Thus fa = f % where x is the component of a and we can use Loop Integral Formula

[PS95]
/ e 1L (=)niT(n-9) <1>"—5
@r)d (2— A"~ (Am?2  T(n) \A

First lets deal with (a-Y') Notice that inner product of ¥ which is Y -Y := Y? is no longer

zero along with a. Therefore we can not write (a-Y) as |2, — Z a;7;)])?, which only defines for

null vector inner product. Instead we have to write it as a1 (a - Z) —|— asz(a-j)+as(a-k)+as(a-1)

which is

o1 (e — y:)® + (e — ;) + as(za — yu)® + au(za — 01)?

we can be written as

i=1 i=1 Qi
4 2 2
(o T ()
=1 Zz—l Q; Zz—l Q;
=(a—Y) Y2

the last step is because Z?zl o; = 1.

So we can identify [ as (@ — Y) meanwhile d°l = d®a and A as Y2, and n = 3

dPz 1
And we can get [ 5335 =y =y e
Here, a-I and I-Y are just factors used to balance the conformal weight. When incorporated
into the metric we obtain, both contribute a value of 1.

4 Feynman Parametrization In 2 Loop

Given Formula

“+21+22. / (i.i+2)2
Lo (a- z+2)(a-b)(b-i)(b'i+2)

21+21 21' / Z Z+2>(Z 2—2)
L (a-i)(a- Z+2)(a D)(b-i—2)(b-1)

Izl+21 3,i— 1. Z 7’+2)(2_1 1_3)
2ri (a-i)(a-i+2)(a-b)(b-i—3)(b-i—1)




4.1 Iy,; Calculation

1,3;3,1
IZtrz

Using formula in (9) and substituting i to 1

1,3;3,1 . (1 3)2
I2tm T /a,b (a . 1)(@ . 3)(a . b)(b : 1)(b : 3)

Using formula (1) for loop variable a and b we obtain

1,3;3,1 _ o [T [d"a1as] [d'D1b;] (1.3)°
L = T3] /0 vol(GL(1)) vol(GL(1)) / (@ -A2a- )b B? ©)
with A = Zi:l.?) a;y; and B = Zizl,g biyi-

For start, let’s dealing with first part fa m Using a integral transformation similar

m = ﬁ we can write it as

r3/ ¥ | e

More than that, we can use loop integral formula (5) with D = 3 we get

o0
to a parametrization f dx
0

/dfF ~ 3] ! /f !
(4m)% (I (A+ f))3-3(L(A+ fb)?)3~32 16 (5(A+ fb) - (A+ fb))3/2

We would ask > =0 (since all single 5- vector which satisfy (#,1,v?) are null under our

metric) and we get

ar " ), %(A2+2Abf+b2f2)3/2 A Y Y (YSRE

After integration of f we have

1 1

2 /1A A(A-b)

e In the paper they would strip the % for each loop for convenience.

These derivation means f m therefore

,/1AA(Ab

/a,b(wA) (alb(b B)? /\/ﬂA b)(b- B)>

Same transformation as above (By omitting 1/47)

1
f (a- A) (a-b) — =1 fo df (L (A+fb)-(A+fb))3/2

we get
1 / 1 / 1
9. /4. 4Ja(AD)(b- /1A A (3(B+e€A) - (B+eA))3/?
2
Using integration trick = fo de XC Ve < s \FYS - We can write above integration as



Upon substituting (6.4) into (6.1), one notes that the variable EiSICIIEeONIUCIBON

Therefore, it is allowed to gange-fix one of them by setting e = 1, which

effectively locks the two GL(1) together. This will always be the case: the variable e is always
removable in this way. Thus we have

Figure 2: Enter Caption

1
A @w@A @@§+A+%®A+BV@A+BW

e Rmk: Since A? # 0 we can not use same procedure to reduce this integral.

4.1.1 Back to Integration (6.1)

Substitute our integral transformation in (6.1) and get

I(3)? /OO [d*ajas]  [d'bybs) /OO / e 1
o Vol(GL(1)) vol(GL(1)) J, 4mv/c J, (ctA-A+L(eA+B) (eA+ B))?

We can gauge fix e as 1. We can see that e is coupled to both A and B , we can remove
our gauge fixing on a; and b; to e. For example, when we remove the gauge from b;, it becomes
[d*b1b3] together with a; we have [d®a;azb;bs]

ANHTEFR A PR IE A TR

1 / / [d? a1a3b1b3 (1-3) N
0 4Wvﬁ vol(GL(L)) (1 +¢)lA-A+A-B+1B-B)
Now we need to deal with regularization, and all we need to do is to shift (i-j) = =3, +2up
e Rmk we have to be careful with those (i - j) with ¢ = j , which was previously dropped
as 0 but preserved in the regularization. The ordering of regularization should be watched out
for. And we only need to consider the leading behaviour of numerator so we can leave the

regularization away from the numerator.

4.1.2 Regularization

2
We define € := ’; & and we simplify the inner product on denominator,
13

2 2
a2(1-1) By 1
SR L Sa%e(1-1
2 2 + 2 ( )
—|— a1a3(1 . 3) —I— a3b1(1 . 3) —I— a1b3(1 . 3) —|— b1b3(1 . 3)

a3(3-3) b3(3-3)
2 2

+ a1b1(1 . 1) +

+ ajase(l-3) + +asbs(3-3) +

1
+§@q&3)

We do the regularization and divide the numerator, (i,7) — €, (1,3) — 1 + € and we get,

a%e + age + 2a1 b€ + b%e + 2asbse + bge + a?ce + agce
+ CL1(L3<1 + 26) + a3b1(1 + 26) + (Zlb3(1 + 26)
+ blbg(l + 26) + a1a30(1 + 26)

which is exactly what was shown in the paper.



Change Variable Observing the homogeneous of denominator, we can do the variable

change by substitute the variables as

[d3a1a3b1b3]
vol(GL(1))

We gauge fix a; as 1 and aq, b; shares the same character in the integrand denominator, so does

ag=1, b=z, a3=a, b3z=ay, = adadzxdy

as, bz So we may use x,y to represent their behavior,. Last but not least, we need a variable a to
describe the scaling behavior of those variables.

And there fore the denominator in side the square is

(% (c+ (y+1)?) +ae + V(e +ay+z+y+1) +e(c+ (z+1)?)°

If we replace a in to % and change relevant integration measure, the integrand becomes

p
(Pe (c+ (z+1)2) +p2e + D(ctay +a+y+1) +ele+(y+1)2)°

The minus sign would be cancelled with the inversion of integral interval and get fooo in the
end. Since we can do the inversion, we only need to consider the integration region of [1, cco] and
multiply by 2. In that region the term ae is suppressed by € which can be thrown away when we

do the integration over a

a’ce + a*y’e + 2a*ye + a’e + 2ace + ac
+ 2axye + axy + 2axe + ax + 2aye + ay + 2ae + a + ce + 26 + 2we + €

After throwing all therm include ae

ac—l—amy+a$+ay+a+ce+a:26+21’6—1—6

Although it sees this operation messed up the inversion property of the integrand, this
operation still applies in the limit lim e — 0 and we can prove this numerically. The result shown
in fig 3 reveals that even though we thrown away some term, integration over [0, c0] get same
result. In previous analysis, we see those integrand are same in the region of [1,00] so we can

conclude that the integration are same in the region of [0, 1] which means the inversion symmetry
ﬁ%»log(aA%»B)

are preserved numerically. Since the integration over [1, 0] gives the form of 2

which is divergent, we can integrate on the dual region which is [0, 1]

4.2 Derive (6.6) and (6.7)

(6.6)

Integration that we have discussed above is written as

13;31 * dc laa ~ dady
g =2 mr) [ GorameaeraTaTor



origin=a + ac+ax+ay+axy+ \[CurlyEpsilon] + 2 a \[CurlyEpsilon] +
a~2 \[CurlyEpsilon] + ¢ \[CurlyEpsilon] + 2 a c \[CurlyEpsilon] +
a*2 ¢ \[CurlyEpsilon] + 2 x \[CurlyEpsilon] + 2 a x \[CurlyEpsilon] +
x*2 \[curlyEpsilon] + 2 a y \[curlyEpsilon] +
2 a*2 y \[CurlyEpsilon] + 2 a x y \[CurlyEpsilon] +
a2 y~2 \[CurlyEpsilon];
simpler=(a ((1 + x) (1 +y) + c) + \[CurlyEpsilon] ((1 + x)"2 + c));
c=22;
x=34;

y=532;
\[CurlyEpsilon]=0.008008333;
NIntegrate[1/(origin)~2,{a,®,In
NIntegrate[1/(simpler)~2,{a,@,I

v 08s Wolfram
0.9128938

©.0128938

Figure 3: Verify inversion symmetry numerically

__A_ —
First we do the integration over a. Since fol da (aAiB)2 = A+B+l°g(j2+3) log(5) , and B here
is €((1+ )%+ ¢) — 1, while € < 1 we can throw away this part in the final result and the leading
Ay
term is (log(A# and therefore what we get is

0o (+=)(A+y)+c

de & (o) +o)
2/ dxdy + O(e)
dmy/e Jo (L+2)(1+y) + )

We can separate the ¢ part along and make the integration to see the dependence on urr

and
/ ~ log(e) log(e)
x =—
o (erE+DE+1)?  +Dlety+1)
/°° log(€) _log(c+1)log(e)
0 Y+ Dety+1) c
<1 1)1
—2/ de og(c + 1) log(c) = —log(e)
o drren/c
Other coefficient can be calculated by mathematica.
(6.7)

From eqn (7) we have

s _ / (1-3)(3-5)
20 Jap (a-1)(a-3)(a - b)(b-3)(b- 5)
First we’ll do feynman parametrization, and we get
1385 _ p[3)? *_ldayas]  [d'bsbs] (1-3)(3-5)
2tri o Vol(GL(1)) vol(GL(1)) J,, (a-A)*(a-b)(b- B)?
with A = Y., s ay; and B = 22:375 biy;.

We use exact integral transformation trick mentioned above and




1
/a,b<a~1><a-3><a-b><b-3><b-5> N

2 > [dlalag} [dlbgbg, 1
['(3) /o vol(GL(1)) vol(GL(1)) /0 47r\f / (clA-A+ LA+ B) (eA+ B))?
(10)

And well use same gauge fixing procedure as above and get

J13:35 :/ / d° a1a3b3b5 (1-3)(3-5)
2tri o 47r\f vol(GL(1 <1+C)%A'A+A-B+%B~B)2
ANFIE B2 st 211

After regularlzatlon, the integrand can be written as

1
((a1 + b5)(a3 + bg) + a1b5 + caias + 6/((61,1 + a3 + b3 + b5)2 + c(a1 + a3)2)2
%} collinear region 4L FH

We identify the dangerous region as the collinear region a; — 0 and b; — 0 and therefore we

can drop the term ag, bs multiplied by € and

Now we’ll do the regularization

1
aq (CL3C + as + b3 + b5) + ag(c + 1)6/ =+ a3(2b36/ + b5) —+ bg(b3€/ + b5))2

integrand =

/ integranddbs
0
- 1
(a1 + as + bg) (al(agc + as + bg) + (I%(C + 1)6/ + (13(2b36/) + bg(bgﬁl))

After gauge fixing a3 = 1 and integrate a;we have

/Oo(yda _ —log (€ ((bs + 1)2 4+ ¢)) + log(bs + ¢+ 1) + log(bs + 1)
T ¢ (s + D2+ ) — (b + D(bs +c+ 1)

Since € < 1 we can rewrite it as

log((bs + 1)(bs + ¢+ 1)) — log ((bs + 1)? + ¢) — log(¢)
(b3 +1)(bs +c+1)

For the integration dependence on ¢’ we have the following

_ /Oo db log(€’) . _IOg(C + 1) log(€)
o s+ )bz tetl) c

dmeq/c 2

Other coefficient can be obtained by calculation on mathematica and we ’ll ultimately have

B /°° Llog(c+ Dloa(¢) __loa(¢)

1 — £ log4€' + O(ur) as expected.

10



5 Contraction of €(x, *, *, *, %) and Related Operations
5.1 1.0 Basic Formulas
Gram determinant formula (3.16)
€(i1, .. 05)€(f1s - - -, J5) := det [(4; - jj)]

E(G/’ 7:7 j7 k? *)6(b7 l’ m7 n7 *) = 6(a7 ,[;7 j? k? M)e(b7 l7 m? n7 ,Uf)

Refer[CH11]
In the Embedding Formalism,
1.2
2%
Xi:
Ty
Ly 1p2 Ly2 12 L
€«5,1,2349 = 1 1 1
f5 fl 52 -’EB f‘l

5.2 1.1 Derivation of Formula 6.9

Regarding the derivation of

1

6(8147172537*)6(83’47576»*)<<C+ 1)1AA—|—AB—|—lBB)2
2 2

The first step is

1

726(814’1’2’3,*)6((14+B)’4’576’*)((C+].)lAA—FAB—FLBB)3
2 2

The second step is?

1
((c+1)3A-A+A-B+iB-B)?

1
2 2

—2¢(1,1,2,3,%)e((A + B),4,5,6, )

Expression given by Jia Kai Guo

(c+D((A-A)+(A-B)+(B-A)+(B-B) (1-A)+(1-B) 2-4)+(2-B) 3-4)+3-B)
; (c+1)(A-4)+ (B-4) (1-4) (2-4) (3-4)
(c+1)(A-5)+ (B-5) (1-5) (2-5) (3-5)
(c+1)(A-6) + (B 6) (1-6) (2-6) (3-6)

((c+1)}4-A+A.-B+1B.B)"
(1-4) (2-4) (3-4)
2x2| (1-5) (2-5) (3-5)
(1-6) (2:6) (3-6)
(c+1);A-A+A-B+iB-B)?

The current issue is how to get from

11



1
((c+1)3A-A+A-B+3B-B)3

2¢(0a,1,2,3, %) (e((A + B),4,5,6, *)>

I guess it should be equal to

1

2e(1, 1,23, 1)l 4,5, 6.0) e T A A B 1B By
2 2

I'm not sure if this is equal to

1

2 1,2,3 4,5,6
6(*7 y &y 7*)6(*7 » 9y ’*)((C+1>%AA+AB+%BB)3

Still hard to get the right coefficient
(1-4) (2-4) (3-4)
2x2|(1-5) (2-5) (3-5)
(1-6) (2-6) (3-6)
((c+1)1A-A+A-B+iB-B)>?

6 Detailed integration

6.1 Formula 6.13

/-oo dce [d4a1a2a3b1b3] as + 2b1 + 2b3
0 47’(’\/6 a1<b1,a3<bs VOI(GL(].)) ((12 + bl + b3>2(b1b3 + ayasc + ECL%(]. + C))2
1. Fix the gauge by setting a, to maintain symmetry.

2. Integrate over a; and ag in the integrand, which does not contain ¢, to obtain the result:

(2b1 + 2b3 + 1)(log((c + 1)(b1b3 + €)) — log(b1bs + c + ¢€))
C(bl + b3 + 1)2(b1b3 + ce + 8)
3. Integrate over c to get a good result:

(2b, + 205 + 1) (2\/b1b3 Fe4E (1og (—4(%;7— m) - 2))
4(b1 + b3 + 1)2(b1b3 + 6)3/2

4. However, it is unclear how to proceed further.

6.2 Formula 6.14

I (y) = = de [d*ayasb,] y(a2y+2b1)log<(a2+blgg(ﬁi(z)l+a2) ) s Lis(1 — )
y) = o 4m/c [, o, vol(GL(1)) by(by + ayc)(azy + by)? =% Ip Y

We choose to fix the gauge by setting a,. Then, the inner integral can be written as:

. yly+2bi)log (w)
d”a,b
/al<b1 101 by (b1 + arc)(y + by)?

12



The result of integrating over a; is:

y(201 + y) L b (c+bi(V=—c—1)+V~¢)
bic(by + y)? ? b? +c

+ log(c + 1) (log(b] + ¢) — log(c))

+ Lip <ﬁbl n bljl_ c+ ﬁ)
— Li, <(_ C)s/g f:cL(ZIclJ)r \/—7)>

+ Liy <(C)3/2 fclf;lc(ﬁ ﬁ)) )

Using the formula — [ dtwlog = Liy(tx) + log(t) log(1 — tx) to handle the Liy terms, we get

the expression:

§(2bs +1) (1og<c 1) (log (63 + ) — log(<)) —

bic(by +y)?

2b1 clog(t) (b3 (t(e—t+2)—1)+b7c(t2+1) +brc((c+2)t—1)+c?)
(b2 (c+(t—1)2)+2b1 ct+c2 4 ) (b3 (t(ct+t—2)+1)+2b1 ct+c)

However, subsequent integrals over b; or ¢ are difficult to handle.

6.3 Formula 6.19

We need to verify the integral:

Iﬁg)fm(l) :/ de log 2 log(ul(c—l— 1)) _ log— arccos(y/ur)
o Amye 1—u1(c+1) 2y/ui(1—u)

Substituting the integral into Mathematica 13 yields the result:

(log(uz) — log(us))((log(—y/ur + iv/1 — uy) — im)(log(c) — log(1 — uy))
8w/ —((u; — 1)uq)
+arccos(\/a)(i log(c) —ilog(1l — uy) — 4m)
8m/—((ug — 1)uy)

Using the identity arccos x = —iln (x +Va? — 1), and considering that the first part contains

1 arccos, we retain the real part of the result as follows:

_ arccos(y/ur)(log(uz) — log(us))
2¢/—((u1 — Duy)

7 Appendix

7.1 Properties Related to Liy(x)

Definition:



Common Formulas:

(1) Liz(z) 4+ Lis (3%5) = -2 In*(1 — 2) (z < 1);

(2) Liz(2?) = 2 Lig(z) + 2 Lig(—x);

(3) Lig(x) + Lis(1 —z) = —2 —Inzln(l — x).

(4) Lia(~ :

(5) Liz (3) = 43 — 3 n*(2)

Reference: https://mathworld.wolfram.com/Dilogarithm.html

1)=—5m

7.2 Useful Mathematica Commands
7.2.1 Liy(z)

The general Liy(z) is difficult to integrate with other functions; consider using integration

by parts, but the following method is more general:

*x*x*/. PolyLog[2, x_] :> (-x Logl[t])/(1 - t x) // FullSimplify;

Assuming[** \[Element] PositiveReals && 1 > t > 0, ***x];

*x*x* // Expand;

Assuming[t \[Element] PositiveReals, Integrate[List @@ %, t]];

Normal [Assuming[ul \[Element] PositiveReals & 0 > t > -1,
Series[% /. t -> 1 +t, {t, 0, 0}]1] /. Floor[__] -> 0;

Normal [Assuming[ul \[Element] PositiveReals && 1 > t > O,
Series[%%, {t, 0, 0}11]1 /. Floor[__1 -> 0;

Result = %% - % // Total

The mathematical basis for this method is

1
dt 228 og(t) = Lis(tz) + log(t) log(1 — tx)
1 —tx
Finally, integrating term by term can improve computation speed; generally, after introducing t,

the series expansion yields many terms.

Maple cannot read the HyperInt.mpl file; may need to try an older version.

7.2.2 Numerical Verification of Integrals Using Random Numbers

temp = %;
Thread[Variables[temp /. Log -> Plus] ->
RandomReal [20, Length[Variables[temp /. Log -> Plus]]]]
NIntegrate[**xx/. %, {**, O, Infinity}]
temp /. %h

Not expanding ‘Log‘ will recognize additional variables.
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7.2.3 Integration trick

Do the indefinite integral and treat the upper limit as 1/z , the integral over fooo can be

represented by expansion.

Example code of integration of a; over function 42

Integrate[IAl, all;

Assuming[al \[Element] PositiveReals && a2 \[Element] PositiveReals &&
a3 \[Element] PositiveReals && b4 \[Element] PositiveReals &&
b5 \[Element] PositiveReals && b6 \[Element] PositiveReals &&
¢ \[Element] PositiveReals && ul \[Element] PositiveReals &&
u2 \[Element] PositiveReals && u3 \[Element] PositiveReals &&

ub5 \[Element] PositiveReals,
Normal [Series[% /. al -> 1/a1l, {al, 0, 0}]1];
Assuming[al \[Element] PositiveReals && a2 \[Element] PositiveReals &&
a3 \[Element] PositiveReals && b4 \[Element] PositiveReals &&
b5 \[Element] PositiveReals && b6 \[Element] PositiveReals &&
¢ \[Element] PositiveReals && ul \[Element] PositiveReals &&
u2 \[Element] PositiveReals && u3 \[Element] PositiveReals &&
ub \[Element] PositiveReals, Normal[Series[%%, {al, 0, 0}111;
IA2 = %% - % // Simplify
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